

MethodSCRIPT Examples - Android

Last revision: August 21, 2019

© 2019 PalmSens BV

www.palmsens.com

2

MethodSCRIPT Examples - Android

1.1 Contents:

The examples in the /MethodSCRIPTExamples_Android folder demonstrate basic communication with
the EmStat Pico from an Android device. The examples show how to connect to the device (using USB
and Bluetooth), send a MethodSCRIPT to the device, run measurements on the device, read and parse
the measurement data packages from the device using Java.

1.2 Examples:

1.2.1 Example 1: Basic MethodSCRIPT Example (methodSCRIPTExample)
This example demonstrates how to implement USB serial communication using the Java d2xx library to

 Establish a connection with the EmStat Pico
 Send a MethodSCRIPT to the EmStat Pico
 Read and parse measurement data packages from the EmStat Pico
 Abort the MethodSCRIPT

This does not include error handling, method validation etc.

1.2.2 Example 2: Bluetooth Example (msBluetooth)
This example demonstrates how to communicate with the EmStat Pico from an Android device using a
Bluetooth connection.

Hardware Setup

In order to connect via Bluetooth, make sure that the UART switch block SW4 on the EmStat Pico

development board has the switches for Bluetooth 5 and 6 turned on. Also, the UART Switch block SW3

should have the switches for PICO Bluetooth 5 and 6 turned on.

1.3 Configuring the IDE (Android Studio)

The example projects in the SDK are built using Android Studio 3.3.1. To get started with developing
apps on Android Studio, please follow the installation instructions at:
https://developer.android.com/studio/install

1.3.1 Android Studio:
When trying to deploy the example project from Android Studio, if the default settings do not work,
please make sure that the following fields are configured under project -> Open Module Settings.

https://developer.android.com/studio/install

 3

MethodSCRIPT Examples - Android

Compile using Android version: Use Latest Platform (API level 28 (Android 9.0 (Pie)) at the time of writing,
yours may be higher/newer)

Minimum Android to target: API level 16 (Android 4.1 (Jelly Bean))

Target Android version: Use the same version as the version used in Compile Sdk Version.

4

MethodSCRIPT Examples - Android

Please make sure (using Tools -> SDK manager), that the newest version of the Android SDK is installed
else update it to the newest.

Note: Do not forget to enable “USB Debugging” on the Android device while deploying the app.

1.4 Communications

1.4.1 Connecting to the device
The Android device can either use either Bluetooth or USB serial communication with the EmStat Pico.

1.4.1.1 USB Serial communication

The MethodSCRIPTExample module demonstrates the USB serial communication using the Java d2xx
library (downloaded from here). The D2xx.jar is placed in the libs folder in the MethodSCRIPTExample
module. The D2xxManager and FT_Device classes are used in the example to communicate with the
EmStat Pico.

import com.ftdi.j2xx.D2xxManager;

import com.ftdi.j2xx.FT_Device;

ftD2xxManager = D2xxManager.getInstance(this);

The Android device needs USB permissions to communicate with USB devices. These permissions have
to be included in the AndroidManifest.xml.

<uses-feature android:name="android.hardware.usb.host" />

<uses-permission android:name="android.permission.USB_PERMISSION" />

In order to discover a particular USB device, an intent filter has to be specified in the AndroidManifest.xml
to filter for the android.hardware.usb.action.USB_DEVICE_ATTACHED intent. Along with this intent filter,
a resource file that specifies properties of the USB device, such as product and vendor ID has to be
included as meta-data.

https://www.ftdichip.com/Android.htm

 5

MethodSCRIPT Examples - Android

<activity

android:name="com.palmsens.methodSCRIPTExample.MethodSCRIPTExample"

android:launchMode="singleTask">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <action

android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED" />

 <action

android:name="android.hardware.usb.action.USB_DEVICE_DETACHED" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 <meta-data

android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"

android:resource="@xml/device_filter"/>

</activity>

The device_filter resource file contains the properties of the USB device (Product ID and Vendor ID) as
shown below.

<resources>

 <!-- 0x0403 / 0x6015: FTDI FT231X -->

 <usb-device vendor-id="1027" product-id="24597" />

</resources>

Upon discovering the device when USB is attached, the device can be opened using the ftD2xxManager
instance created at the beginning as shown below.

ftDevice = ftD2xxManager.openByIndex(this, 0);

The baud rate of the EmStat Pico has to be set to 230400.

Upon connecting to the device, the version command is sent to verify if the device is EmStat Pico. A new
thread is started which keeps receiving the measurement packages until the device is disconnected.

1.4.1.2 Bluetooth communication

The msBluetooth example demonstrates the communication between Android device and EmStat Pico
over Bluetooth. The Android device needs the following Bluetooth permissions to be specified in the
AndroidManifest.xml

<uses-permission android:name="android.permission.BLUETOOTH" />

<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

On Android devices with API level 23 (Android 6.0 (Marshmallow)) and above, the location permissions
needed for Bluetooth have to be requested at run time as shown in the code snippet below.

if (checkSelfPermission(Manifest.permission_group.LOCATION) ==

PackageManager.PERMISSION_DENIED) {

 this.requestPermissions(new

String[]{Manifest.permission.ACCESS_FINE_LOCATION,

Manifest.permission.ACCESS_COARSE_LOCATION}, REQUEST_CODE_LOCATION);

}

In order to establish a Bluetooth connection, a new BluetoothConnectionService instance is created in
the main activity, which in turn starts a separate thread to connect and communicate with the EmStat
Pico.

6

MethodSCRIPT Examples - Android

A BluetoothSocket instance for the selected device can be created using the
createInsecureRfcommSocketToServiceRecord of the BluetoothDevice class as shown below. The UUID
of the device can be found as shown in the code below.

ParcelUuid[] uuid = mSelectedDevice.getUuids();

mSelectedUUID = uuid != null ? uuid[0].getUuid() : DEFAULT_UUID;

The default SPP UUID for a Bluetooth serial board is used in this example as shown below.

private static final UUID DEFAULT_UUID = UUID.fromString("00001101-0000-

1000-8000-00805F9B34FB");

Upon successful connection of the Bluetooth socket, the read thread continues to read from the instream
when data is available.

1.4.2 Sending a MethodSCRIPT
The MethodSCRIPT can be read from a text file stored in the Android device and sent to the EmStat
Pico. In this example the MethodSCRIPT files are stored in the assets directory and read as shown
below.

bufferedReader = new BufferedReader(new

InputStreamReader(getAssets().open(SCRIPT_FILE_NAME)));

The MethodSCRIPT can be sent to the EmStat Pico through USB as shown in the code below.

bytesWritten = ftDevice.write(writeByte, script.length());

The MethodSCRIPT can be sent to the EmStat Pico over Bluetooth using the Bluetooth socket out
stream as shown in the code below.

mOutStream.write(bytes);

1.4.3 Receiving the measurement packages
Once the MethodSCRIPT is sent to the device, the measurement packages can be read continuously
from the device.

The available data, in the case of USB connection, is read one character at a time as shown in the code
below.

readSize = ftDevice.getQueueStatus(); //Retrieves the size of the

available data on the device

if (readSize > 0) {

 ftDevice.read(rbuf, 1);

}

The available data, in the case of Bluetooth connection, is read one character at a time as shown in the
code below.

if (mInStream != null && mInStream.available() > 0) {

 readSize = mInStream.read(rbuf, offset, 1); //Reads a character from

the socket instream

}

The measurement packages read over Bluetooth are posted back on the handler to be sent back to the
main activity for further parsing.

 7

MethodSCRIPT Examples - Android

1.4.4 Parsing the measurement packages
The measurement data packages can be parsed further to obtain the actual data values. Here’s a set of
data packages received from a Linear Sweep Voltammetry (LSV) measurement on a dummy cell with
10kOhm resistance.

e\n
M0000\n
Pda7F85F3Fu;ba48D503Dp,10,288\n
Pda7F9234Bu;ba4E2C324p,10,288\n
Pda806EC24u;baAE16C6Dp,10,288\n
Pda807B031u;baB360495p,10,288\n
*\n
\n

While parsing a measurement package, various identifiers are used to identify the type of package. For
example, In the above sample,

1. ‘e’ is the confirmation of the “execute MethodSCRIPT” command.
2. ‘M’ marks the beginning of a measurement loop.
3. ‘P’ marks the beginning of a measurement data package.
4. “*\n” marks the end of a measurement loop.
5. “\n” marks the end of the MethodSCRIPT.

The data values to be received from a measurement can be sent through ‘pck’ commands in the
MethodSCRIPT. Most techniques return the data values Potential (set cell potential in V) and Current
(measured current in A). These can be sent with the MethodSCRIPT.

In case of Electrochemical Impedance Spectroscopy (EIS) measurements, the following variable types
can be sent with the MethodSCRIPT and received as measurement data values.

 Frequency (set frequency in Hz)
 Real part of complex Impedance (measured impedance Ohm)
 Imaginary part of complex Impedance (measured impedance in Ohm)

The following metadata values can also be obtained from the data packages, if present.

 CurrentStatus (OK, underload, overload, overload warning)
 CurrentRange (the current range in use)
 Noise (Noise)

1.4.4.1 Parsing the measurement data packages

Each measurement data package begins with the header ‘P’ and is terminated by a ‘\n’. The
measurement data package can be split into data value packages based on the delimiter ‘;’. Each of
these data value packages can then be parsed separately to get the actual data values.

The type of data in a data package is identified by its variable type:

 The potential readings are identified by the string da
 The current readings are identified by the string ba
 The frequency readings are identified by the string dc
 The real impedance readings are identified by the string cc
 The imaginary impedance readings are identified by the string cd

For example, in the sample package seen above, the variable types are
da7F85F3Fu - da Potential reading and
ba48D503Dp,10,288 – ba current reading.

8

MethodSCRIPT Examples - Android

The following 8 characters hold the data value. The data value for the current reading (8 characters) from
the above sample package is 48D503Dp.

The SI unit prefix from the package can be obtained from the parameter value at position 8

In the above sample package, the unit prefix for current data is ‘p’ which is 1e-12 A.

After obtaining variable type and the data values from the package, the metadata values can be parsed, if
present.

1.4.4.2 Parsing the metadata values

The metadata values are separated based on the delimiter ‘,’ and each of the values is further parsed to
get the actual value.

The first character of each metadata value metaData[0] identifies the type of metadata.

‘1’ – status
‘2’ – Current range index
‘4’ - Noise

The metadata status is a 1 character hexadecimal bit mask.

For example, in the above sample, the available metadata values for current data are,
10,288. The first metadata value is 10.

1 – metadata status – 0 indicates OK.

The metadata type current range is 2 characters long hexadecimal value. If the first bit is high (0x80), it
indicates a high-speed mode current range. The hexadecimal value can be converted to int to get the
current range.

For example, in the above sample, the second metadata available is 288.

2 – indicates the type – current range
88 – indicates the hexadecimal value for current range index – 1mA. The first bit 8 implies that it is high-
speed mode current range.

Sample output:

Here’s a sample measurement data package from a LSV measurement on a dummy cell with 10 kOhm
resistance and its corresponding output.

Pda7F85F3Fu;ba4BA99F0p,10,288

Output: E (V) = -4.999E-01

i (A) = -4.999E-01
Status : OK
CR: 1mA (High speed)

